
Connection and Operation (Pulse Input Package)

Names and Functions of Driver Parts

Power Input Display

	Color	Function	When Activated		
	Green	Power supply indication	Lights when power is on.		

2 Current Adjustment Potentiometers

Indication	Potentiometer Name	Function	
RUN	Motor run current potentiometer	For adjusting the motor running current.	
ST0P	Motor stop current potentiometer	For adjusting the motor current at standstill.	

3 Function Select Switches

Indication	Switch Name	Function		
1P/2P	Pulse input mode switch	Switches between 1-pulse input and 2-pulse input.		
0FF/SD	Smooth drive function switch	Enables or disables the smooth drive function.		
R2/R1	Resolution select switch	Switches the basic step angle between R1 and R2.		

4 Input/Output Signals

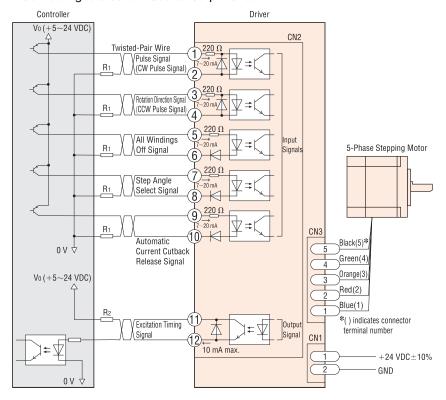
E input Output Signals							
Indication	Input/ Output	Pin No.	Signal Name	Function			
	Input	1	Pulse signal	Operation command pulse signal (The motor will rotate in the CW direction when in 2-pulse			
		2	(CW pulse signal)	input mode.)			
		3	Rotation direction signal	Rotation direction signal Photocoupler ON: CW, Photocoupler OFF: CCW (The motor will rotate in the CCW			
		4	(CCW pulse signal)	direction when in 2-pulse input mode.)			
		5	All windings off signal	Cuts the output current to the motor and allows the motor shafts can be rotated manually.			
CN2		6	All Willumgs on Signal				
ONZ		7	Step angle select	Switches to step angle set in DATA1 and DATA2.			
		8	signal				
		9	Automatic current cutback release	This signal is used to disable the automatic current cutback function.			
		10	signal				
	Output	11	Excitation timing	Outputs signals when the excitation sequence is at STEP "0".			
	output	12	signal				

5 Step Angle Setting Switches

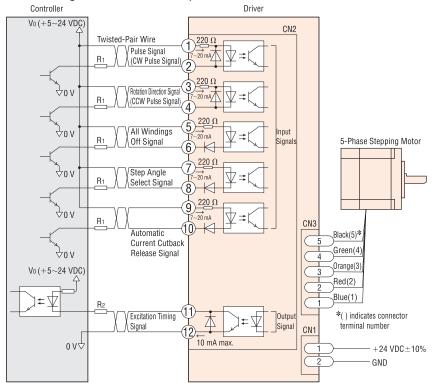
Indication	Switch Name	Function		
DATA1	Step angle	Each switch can be set to the desired resolution from the 16		
DATA2	setting switch	resolution levels.		

R1				R2			
DATA1 DATA2	Microsteps/ Step 1	Resolution 1	Step Angle 1	DATA1 DATA2	Microsteps/ Step 2	Resolution 2	Step Angle 2
0	1	500	0.72°	0	×2.5	200	1.8°
1	2	1000	0.36°	1	×1.25	400	0.9°
2	2.5	1250	0.288°	2	1.6	800	0.45°
3	4	2000	0.18°	3	2	1000	0.36°
4	5	2500	0.144°	4	3.2	1600	0.225°
5	8	4000	0.09°	5	4	2000	0.18°
6	10	5000	0.072°	6	6.4	3200	0.1125°
7	20	10000	0.036°	7	10	5000	0.072°
8	25	12500	0.0288°	8	12.8	6400	0.05625°
9	40	20000	0.018°	9	20	10000	0.036°
Α	50	25000	0.0144°	Α	25.6	12800	0.028125°
В	80	40000	0.009°	В	40	20000	0.018°
C	100	50000	0.0072°	С	50	25000	0.0144°
D	125	62500	0.00576°	D	51,2	25600	0.0140625°
Е	200	100000	0.0036°	E	100	50000	0.0072°
F	250	125000	0.00288°	F	102.4	51200	0.00703125°

Note


- The step angle is calculated by dividing the basic step angle by the number of microstep. The above figures are based on a basic step angle of 0.72°.
- With the 0.36° high-torque type, the basic step angle and resolution are 0.36° and 1000 (microsteps/step 1), respectively.
- •If you are using a geared type, the step angle divided by the gear ratio becomes the actual step angle.
- •The number of microstep that can be switched by the "Step Angle Select" signal are limited to those selected in step angles 1 and 2.
- Do not change the "Step Angle Select" signal input or step angle setting switch while the motor is operating. It may cause the motor to misstep and stop.

Stepping Motors


Connection Diagram

○Connecting to a Host Controller

Connecting to a Current Source Output Circuit

• Connecting to a Current Sink Output Circuit

Notes on Wiring

Input Signal

Direct connection is possible when 5 VDC is applied. If a voltage exceeding 5 VDC is applied, connect an external resistor R_1 so that the current becomes 7 to 20 mA. Example: When V_0 is 24 VDC, R_1 : 1.5 to 2.2 $k\Omega$, 0.5 W min.

Output Signal

Check the specifications of the connected device and if the current exceeds 10 mA, connect an external resistor R_2 .

- ●Use AWG24 to 22 (0.2~0.3 mm²) twisted-pair wires.
- Since the maximum transmissible frequency drops as the pulse line becomes longer, keep the wiring length as short as possible (within 2 m).

Technical reference → Page G-46

 Provide a distance of 100 mm min. between the I/O signal lines and power lines (power supply lines, motor lines, etc.).

♦ Power Supply Connection

Use AWG22 (0.3 mm²) wires.

 Incorrect polarities of the DC power-supply input will lead to driver damage.

Make sure that the polarity is correct before turning power on.

Use min. AWG22 (0.3 mm²) wires.

♦General

- A separate hand crimp tool is required to crimp the included connector and lead wire. The accessory connection cable set (sold separately) comes with all lead wires already crimped.
- If noise generated by the motor cable or power supply cable causes a problem with the specific wiring or layout, try shielding the cables or using ferrite cores.